Bamboost
bamboost/Index/_filtering

bamboost.index._filtering

Attributes

  • Operand=typing.Union['_Key', 'Operator', str, float, int]

Functions

Arguments:
  • cls

Classes

_SupportsOperators

_SupportsOperators.__truediv__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__mul__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__sub__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__add__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__ge__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__gt__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__ne__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__eq__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__le__(self, other) -> 'Operator'
Arguments:
_SupportsOperators.__lt__(self, other) -> 'Operator'
Arguments:

Operator

Operator(self, op, a, b=None)
Arguments:
  • op
  • a
  • b=None
Attributes:
  • _op=bamboost.index._filtering.Operator(op)
  • _a=bamboost.index._filtering.Operator(a)
  • _b=bamboost.index._filtering.Operator(b)
Operator.__repr__(self) -> str
Operator.evaluate(self, item) -> bool
Arguments:
  • item:dict

Filter

Filter(self, *operators) -> None

Filter applied to a collection.

Arguments:
Attributes:
  • _ops:typing.Sequence[Operator]=bamboost.index._filtering.Filter(operators)
Filter.__repr__(self) -> str
Filter.__and__(self, other) -> Filter
Arguments:
Filter.apply(self, df) -> DataFrame | Series | Any
Arguments:
  • df:pandas.DataFrame